Flexible three-dimensional microelectrode array for neural applications
نویسندگان
چکیده
منابع مشابه
Flexible three-dimensional microelectrode array for neural applications
A neural electrode array design is proposed with 3 mm long sharpened pillars made from an aluminumbased substrate. The array is composed by 25 electrically insulated pillars in a 5 x 5 matrix, in which each aluminum pillar was precisely machined via dicing saw technique. The result is an aluminum structure with high-aspect-ratio pillars (19:1), each with a tip radius of 10 μm. A thin-film of pl...
متن کاملPlateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording
Conventional polymer multielectrode arrays (MEAs) have limitations resulting from a high Young’s modulus, including low conformability and gaps between the electrodes and neurons. These gaps are not a problem in soft tissues such as the brain, due to the repopulation phenomenon. However, gaps can result in signal degradation when recording from a fiber bundle, such as the spinal cord. Methods: ...
متن کاملAn active, flexible carbon nanotube microelectrode array for recording electrocorticograms.
A variety of microelectrode arrays (MEAs) has been developed for monitoring intra-cortical neural activity at a high spatio-temporal resolution, opening a promising future for brain research and neural prostheses. However, most MEAs are based on metal electrodes on rigid substrates, and the intra-cortical implantation normally causes neural damage and immune responses that impede long-term reco...
متن کاملFlexible Electrode Array for Retinal Stimulation
In this Work, ITO/PET (Indium Tin Oxide / Polyethylene Terephthalate) electrode structure which provides biocompatibility, mechanical stability and flexibility is fabricated. Flexible ITO/PET implantable electrode array for a retina has been developed. The electrode array is fabricated on a thin PET/ITO substrate and is encapsulated using, SU-8, an insulating material. PET substrate and SU-8 po...
متن کاملIn vitro microelectrode array technology and neural recordings.
In vitro microelectrode array (MEA) technology has evolved into a widely used and effective methodology to study cultured neural networks. An MEA forms a unique electrical interface with the cultured neurons in that neurons are directly grown on top of the electrode (neuron-on-electrode configuration). Theoretical models and experimental results suggest that physical configuration and biologica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors and Actuators A: Physical
سال: 2014
ISSN: 0924-4247
DOI: 10.1016/j.sna.2014.06.020